

RESOURCES FOR "HSC-II MATHEMATICS" ZUEB EXAMINATIONS 2021

@copyright ZUEB

PREFACE:

The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from <u>www.zueb.pk</u> to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:

1: Multiple Choice Questions:

The Multiple-Choice Questions with a stem, correct answer and 3 distractors or plausible wrong answers format is designed to assess the content and thinking of students from; R (Remembering); U(Understanding) and A (Applying, Analyzing, Evaluating, Creating). The questions are also classified into three difficulty levels accordingly; D (DIFFICULT), M (MODERATE), E (EASY)

HOW TO ATTEMPT AN MCQ:

MCQ:

- EACH MCQ HAS FOUR OPTIONS, A, B, C AND D. SELECT ONE OPTION AS THE BEST ANSWER AND FILL IN THE CIRCLE OF THAT OPTION, FOLLOWING THE INSTRUCTIONS GIVEN BY THE INVIGILATOR.
- USE BLACK PEN/PENCIL TO FILL IN THE CIRCLE.

Correct Way	Wr	ong W	Vays
1	1	2	3
a	a	a	a
Ъ	b	b	Ъ
C	\otimes	C	\bigotimes
d	d	d	d

S #	MCQ'S MATERIAL	KEY	CL	DL
	$\lim_{x\to\infty}\frac{1}{5^n}=?$			
1.	Α. ∞	С	K/A	Ε
	B. 1	-		
	C. 0			
	D. None of these			
	$\lim_{x \to \infty} \left(1 + \frac{1}{n} \right)^n = ?$			
2.	A. 1	В	K/A	Ε
	B. e			
	C. ∞			
	D. None of these			
3.	$\lim_{x \to \infty} \left(1 + \frac{1}{n} \right)^{5n} = ?$ A. e	С	K/A	М
	B. e ²			

	C. e ⁵			
	D. None of these			
4.	$ \lim_{x \to \infty} \frac{7^{n} - 1}{7^{n}} = ? $ A. 7 B. 1 C. 7 ⁿ D. None of these	В	K/A	М
5.	The limit of a sequence is Unique.A.DivergentB.ConvergentC.InfiniteD.None of these	В	K/A	Е
6.	$\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x} = ?$ A. 1 B. $\frac{1}{2}$ C. $\frac{1}{4}$ D. 0	В	K/A	Е
7.	$\lim_{x \to 0} \frac{\sin 3x}{\tan 4x} = ?$ A. $\frac{2}{7}$ B. $\frac{7}{4}$ C. $\frac{4}{3}$ D. $\frac{3}{4}$	D	K/A	М
8.	$\lim_{x \to 0} \frac{\sqrt{x} - 1}{x - 1} = ?$ A. 1 B. $\frac{1}{2}$ C. 2 D. 0	D	K/A	м
9.	$ \lim_{x \to 0} \frac{\text{Tanx}}{x} = ? $ A. 0 B. 1 C. 2 D. 3	В	K/A	E
10.	1. Limits of $\frac{\sin^2 3x}{x^2}$ tends to 0 is :	Α	K/A	Е

		1	1	-
	A. 9			
	B. $\frac{1}{-}$			
	B. $\frac{1}{9}$			
	C. 4			
	D. $\frac{1}{4}$			
	The distance between two points (3, 2) and (7, 5) is A. 2			
11.	B. 3	D	K/A	Е
11.	C. 4		IN A	Ľ
	D. 5			
	The coordinates of a point situated on y-axis at a distance			
	of 6 units from x-axis.			
	A. (0, 6)			
12.	B. (6, 0)	Α	K/A	Ε
	C. (6, 6)			
	D. None of these			
	In which quadrant does (-4, 3) lie ?			
13.	A. I B. II	В	K/A	Μ
13.	B. II C. III	D	K/A	IVI
	D. None of these			
	The ratio in which the line segment joining the points A(2,			
	-3), B(5, 6) is divided by x-axis			
	A. 1:2			
14.	B. 2:1	Α	K/A	Μ
	C. 3:2			
	D. None of these			
	1. The ratio in which the line segment joining the			
	points P(-4, 2), Q(8, 3) is divided by y-axis			
15	A. 3:1	C		Б
15.	B. 1:3	С	K/A	E
	C. 1:2			
	D. None of these			
	What is the y-coordinates of any point on the x-axis?			
	A. 0	1.		
16.	B. 1	Α	K/A	Ε
	C. y			
	D. None of these			
	What is the x-coordinates of any point on the y-axis?			
17	A. 0 P. 1		T7 / A	ъл
17.	B. 1 C. Y	Α	K/A	Μ
	D. None of these			
	The (undirected) distance between two points $P_1(x_1, y_1)$			
18.	and P ₂ (x ₂ , y ₂) on the coordinates plane is given by: $ P_1 P_2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	Α	K/A	Μ

			-	
	B. $ P_1 P_2 = \sqrt{(x_1^2 - y_1^2)}$			
	C. $ P_1 P_2 = (x_2 - x_1)^2 - (y_2 - y_1)^2$			
	D. None of these			
	What is the slope of any line parallel to y-axis ?			
10	A. 0			-
19.	B. 1	C	K/A	Ε
	C. ∞			
	D. None of these			
	What is the equation of the line passing through two given points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$.			
	A. $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$			
20.	$y + y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x + x_1)$	Α	K/A	Е
	B. $x_2 - x_1$			
	$y_1 + y = \frac{y_2 - y_1}{x_2 - x_1} (x + x_1)$			
	C. $A_2 = A_1$ D. None of these			
	What will be the equation of the line passing through the			
	points $(1, -2)$ and $(-3, 5)$?			
	A. $7x + 4y + 1 = 0$			
21.	B. $7x - 4y + 1 = 0$	Α	K/A	Μ
	C. $7x + 4y - 1 = 0$			
	D. None of these			
	What is the equation of the line passing through two given			
	points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$			
	A. $\begin{bmatrix} 1 & y_1 & 1 \end{bmatrix}$			
	$\begin{vmatrix} 1 & \mathbf{y}_1 & 1 \end{vmatrix}$			
	x y 1			
22.	$\begin{vmatrix} \mathbf{x} & \mathbf{y} & 1 \\ \mathbf{x}_1 & \mathbf{y}_1 & 1 \end{vmatrix} = 0$	В	K/A	Μ
	$\begin{bmatrix} 1 & y_1 \\ x_2 & y_2 \end{bmatrix}$			
	C. $\begin{vmatrix} \mathbf{x} & \mathbf{y} & 1 \\ \mathbf{x}_1 & \mathbf{y}_1 & 1 \end{vmatrix} = 1$			
	C. $ x_1 \ y_1 \ 1 = 1$			
	\mathbf{x}_2 \mathbf{y}_2 1			
	D. None of these			
	For what value of m, the lines $2x - 3y - 7 = 0$, $4x - 3y - 11$			
	= 0 and $2x + my + 1 = 0$ are concurrent?			
23.	A. 4	С	K/A	Е
	B. -5			
	C. 5			
	D. None of these			

	Right bisector of sides of a triangle are :			
	A. parallel	~		-
24.	B. concurrent	C K/A	K/A	Е
	C. perpendicular			
	D. None of these			
	What does any equation of the first degree in x and y,			
	called linear equation represents?			
25.	A. A Plane	В	K/A	Μ
	B. A Line	-		
	C. A Circle			
	D. None of these			
	What is the condition of perpendicularity for the lines			
	given below? $a_1 x + b_1 y + c_1 = 0$, $a_2 x + b_2 y + c_2 = 0$?			
	A. $a_1a_2 - b_1b_2 = 0$			
26.	B. $a_1a_2 + b_1b_2 = 0$	В	K/A	Μ
	C. $\frac{a_1}{a_2} = \frac{b_1}{b_2}$			
	$a_2 b_2$			
	D. None of these			
	What is the area of the triangle with vertices $P_1(x_1, y_1)$,			
	$P_2(x_2, y_2)$ and $P_3(x_3, y_3)$ are collinear, then the area of the	A		
	triangle region must be			
27.	A. Zero		K/A	Ε
	B. Negative			
	C. Unity			
	D. None of these			
	Find the distance of the point $(3, 4)$ to the line $4x - 3y + 1$			
	= 0			
28.	A. 5	D	K/A	Е
	B. 4	-		_
	C. 3			
	D. 1/5			
	Find the area of the triangle whose vertices are (3, 1), (-2,			
	5), (-4, -5)?			
29.	A. $\Delta = 25$ sq. units	С	K/A	м
49.	B. $\Delta = 26$ sq. units	C	N/A	Μ
	C. $\Delta = 29$ sq. units			
	D. $\Delta = 29$ sq. units			
	The point of concurrency of 3 lines is			
	5x - 3y - 7 = 0			
	3x - 4y - 10 = 0			
30.	x + 2y = 0	C	TZ / A	ъл
30.	A. (1, -2)	C	K/A	Μ
	B. (2, 1)			
	C. (2, -1)			
	D. (0, 2)			
	For what value of "K" the three lines be concurrently y =			
31.	3x - 1, $2y = x + 3$; $3y = kx + 4$	C	K/A	Е
31.	A. 4	C	N/A	E
	B. 3			

	C. 2			
	D. 7			
	The condition if the pair of lines $ax^2 + 2hxy + by^2 = 0$ is			
	parallel :			
32.	A. $h + a - b = 0$	D	K/A	Е
02.	B. $b^2 - ha = 0$			
	C. $h - ab = 0$			
	D. None of these			
	The condition if the pair of lines $ax^2 + 2hxy + by^2 = 0$ is			
33.	perpendicular to each other :			
	A. a + b = 0	Α	K/A	Μ
	B. $a-b=0$			
	C. $h - ab = 0$			
	D. None of these			
	If $y = 7$, $\frac{dy}{dx} = 7$			
34.				
	A. 6 B. 7x	C	K/A	Μ
	C. 0			
	D. 8			
	dv			
	If = x^2 , $\frac{dy}{dx} = ?$			
	A. 2			
35.	B. x	С	K/A	Ε
	\mathbf{C} . $2\mathbf{x}$			
	D. 0			
	if $y = \frac{1}{x^2}$, $\frac{dy}{dx} = ?$			
26	A2x	D	T Z / A	
36.	B. -2x ⁻³	B	K/A	Ε
	C. Both A and B			
	D. None of these			
	If y = $5x^3 - 4x^2 + 7x + 9$, $\frac{dy}{dx} = ?$			
	A. $10x^2 - 8x + 7 = 0$	C		
37.	B. $15x^2 - 4x + 8 = 0$	С	K/A	Μ
	C. $15x^2 - 8x + 7 = 0$			
	D. 0			
	If y = $(ax^2 + bx + c)^p$, $\frac{dy}{dx} = ?$			
	A. $P(ax^2 + bx + c)^{p-1}$			
38.	A. $P(ax^2 + bx + c)^{p-1}$ B. $P(ax^2 + bx + c)^{p-1}$ (2ax + b)	В	K/A	Μ
	B. $P(ax^2 + bx + c)^{p-2}(2ax + b)$ C. $P(2ax + b)$			
	D. None of these			
			I	1

39.	If $y = (x^3 + 10x^2 + 3)^{2/5}$, $\frac{dy}{dx} = ?$ A. $\frac{2}{5}(3x^2 + 20x)(x^3 + 10x^2 + 3)^{-3/5}$ B. $\frac{2}{3}(x^3 + 10x + 3)^{3/5}$ C. $(3x^2 + 10x)$	A	K/A	Е
	D. None of these			
40.	If $(x + 4) (x - 2)$, $\frac{dy}{dx} = ?$ A. $2x + 6x$	В	K/A	Е
40.	B. $2x + 2$ C.Both A and BD.None of these	D	K/A	E
	If $y = (\sqrt{x} + 3) (\sqrt{x} - 3), \frac{dy}{dx} = ?$			
41.	 A. 1 B9 C. 9 D. x 	Α	K/A	Μ
42.	If $y = \cos^2 3x$, $\frac{dy}{dx} = ?$ A. $2\cos^3 x \sin^3 x$ B. $-6\cos^3 x \sin^3 x$ C. $-6\cos^3 x$ D. None of these	В	K/A	М
43.	If $\gamma = \frac{1 - e^x}{1 + e^x}$, $\frac{dy}{dx} = ?$ A. $\frac{-2e^x}{(1 + e^x)^2}$ B. $\frac{1}{(1 + e^x)}$ C. $\frac{1}{(1 + e^x)^2}$ D. None of these	A	K/A	Е
44.	If $y = \ln \cos x$, $\frac{dy}{dx} = ?$ ATanx B. Cotx C. 1 D. Sinx	А	K/A	E
45.	If y = ln (x ² + 1), $\frac{dy}{dx} = ?$ A. $\frac{2}{x^2 + 1}$	В	K/A	М

@copyright ZUEB

	2x			
	B. $x^2 + 1$			
	$\frac{1}{1-2}$			
	c. $\overline{1+x^2}$			
	D. None of these			
	Maximum and Minimum values are also called :			
	A. Extreme values			
46.	B. Turning values	Α	K/A	Е
τυ.	C. Both A and B	1		
	D. None of these			
	The points where a function has a maximum of a			
	minimum value are called :			
47.	A. Turning-points	Α	K/A	Е
- /.	B. Stationary points	A		
	C. Both A and B			
	D. None of these			
	The second derivative condition for f(x) to have maximum			
	value f(a) at x = a is :			
	A. $\frac{dy}{dx} = 0$ at x =a			
48.	dx dx	В	K/A	Μ
40.	B. $\frac{d^2}{dx^2}$ is -ve at x = a	D	N/A	IVI
	B. $\frac{d}{dx^2}$ is -ve at x = a			
	C. Both A and B			
	D. None of these			
	The condition for $f(x)$ to have a minimum value at $x = a$ is :			
	A. $\frac{dy}{dt} = 0$, at x = a			
	A. $\frac{dx}{dx} = 0$, at $x = a$			
49.	dv^2 .	В	K/A	Μ
	B. $\frac{dy^2}{dx^2}$ is +ve at x = a			
	C. Both A and B			
	D. None of these			
	If $f'(x) = 0$ does not give any real values of x_1 the function			
	f (x) has values.			
5 0	A. Maximum	G	T 7 / A	-
50.	B. Minimum	C	K/A	Ε
	C. Neither Maximum nor Minimum			
	D. None of these			
	Find the equation of the Tangent of the following curve y			
	$= x^{2} at (1, 1)$			
51.	A. $2x - y - 1 = 0$		TZ / A	Б
31.	B. $2x - y + 1 = 0$	A	K/A	E
	C. $y - 2x + 9 = 0$			
	D. $2x - y - 7 = 0$			
	Find the equation of the tangent $y = x^3 - 2x^2 + 4$ at (2, 4).			
52.	A. $y-4 = -\frac{1}{4}(x-2)$	Α	K/A	Μ
	B. $y - 1 = x - 1$			

	C. $y - 4 = 4(x - 2)$		
	D. None of these		
	Find the equation of normal to $x^2 + 3xy + y$	/ ² = 5 at (1, 1)	
	A. y = x		
53.	B. $y^2 = x^2$	Α	K/A M
	C. $y - x - 1 = 0$ D.		
	D. $y - x - 2 = 0$		
	Find the extreme value of the function "f"	such that: <i>f</i> (x) =	
	$\left \begin{array}{c} \frac{1}{3} \mathbf{x}^3 - 2\mathbf{x}^2 + 3\mathbf{x} + 1. \\ \end{array} \right \forall \mathbf{x} \in \mathbf{R}$		
	A. $\left(\frac{7}{3}, 1\right)$ B. $\left(\frac{1}{3}, 7\right)$		
54.	$\left \begin{array}{ccc} \mathbf{A}. & (5) \\ & (1) \end{array} \right $	D	K/A E
	$\left(\frac{1}{3}, 7\right)$		
	B. (5)		
	B. $\left(\frac{1}{7}, 3\right)$		
	C. (7) D. None of these		
	$\int e^x dx$		
	A. X		
55.	B. e ^x	B	K/A E
	C. e		
	D. None of these		
	$\int \frac{dx}{1+x^2} =$		
	A. tanx		
56.	A. tanx B. tan ⁻¹ x	В	K/A M
	C. x		
	D. None of these		
	$\int \operatorname{Cosec}^2(5x+4) \mathrm{d}x =$		
	Cot(5x+4)		
	A. $-\frac{\cot(3x+4)}{5}$		
57.	Cot(5x + 4)	А	K/A M
	D. None of these		
	$\int (x+5)^{\frac{3}{2}} dx =$ A. $\frac{2}{5}(x+5)^{\frac{5}{2}}$		
	$2 - 5^{\frac{5}{2}}$		
	A. $-\frac{-(x+5)^2}{5}$		
58.	5	A	K/A E
	$\begin{bmatrix} B. & x^2 \\ C. & x \end{bmatrix}$		
	D. None of these		

		r		
59.	$\int x^{\frac{-3}{2}} dx =$ A. $2x^{\frac{-1}{2}} + C$ B. x C. $x^{\frac{1}{2}}$ D. None of these	A	K/A	Е
60.	$\int x^{-1} dx =$ A. $-\frac{1}{x}$ B. lnx C. 1 D. None of these	В	K/A	М
61.	$\int \left[\frac{a}{x} - 1\right] dx = ?$ A. $a \ln x + c$ B. $-x$ C. $a \ln x - x + c$ D. $\frac{a}{x}$	С	K/A	М
62.	$\int \frac{y+3}{(y^2+6y)^{1/2}} dy$ A. $\frac{1}{2}(y^2+6y)^{1/2}+c$ B. $(y^2+6y)^{-1/2}+c$ C. $(y^2+6y)^{1/2}+c$ D. None of these	A	K/A	Е
63.	$\int \frac{8x^2}{(x^3 + 2)^3} dx$ A. B. A. B. $\frac{-4}{6}(x^3 + 2)^{-2} + C$ A. $-\frac{4}{3}(x^3 + 2)^{-4} + C$ A. $-\frac{4}{3}(x^3 + 2)^{-2} + C$ C. D. None of these	С	K/A	Е
64.	$\int \frac{(\ln x)^7}{x} dx = ?$ A. $\frac{1}{8} (\ln x)^8 + c$	А	K/A	М

@copyright ZUEB

	B. $\frac{1}{7}(\ln x)^7 + c$ B. $\frac{1}{7}(\ln x)^7 + c$ C. $\frac{1}{8}(\ln x)^7 + c$ D. $\frac{1}{8}(\ln x)^{-7} + c$			
	$\begin{bmatrix} -7 \\ B. \end{bmatrix} = \begin{bmatrix} -7 \\ 7 \end{bmatrix}$			
	$1_{(1-)^7}$			
	C. $\frac{-(\ln x)^2 + c}{8}$			
	$\frac{1}{2}(\ln x)^{-7} + c$			
	The center and radius of the circle $x^2 + y^2 - 6x + 4y - 36 = 0$			
	are respectively			
65.	A. (-6, 4), 6	С	K/A	Μ
	B. (-3, 2)	_		
	C. (3, -2), 7			
	D. None of these			
	The equation of the circle with centre (-3, 2) and radius 7			
	is:			
66.	A. $x^2 + y^2 - 3x + 2y + 7 = 0$	В	K/A	Е
UU.	B. $x^2 + y^2 + 6x - 4y - 36 = 0$		N/A	L.
	C. $x^2 + y^2 - 6x + 4y - 36 = 0$			
	D. None of these			
	The equation of the circle, the co-ordinates of the end			
	points of whose diameter are (3, 4) & (-3, -4), is;			
	A. $x^2 + y^2 + 25 = 0$			
67.	B. $x^2 + y^2 = 16$	С	K/A	Е
07.	C. $x^2 + y^2 = 25$	C		
	D. None of these			
	D. None of these			
	The equation of the tangent to the circle $x^2 + y^2 = 25$ at the			
	point (-3, -4) is: A. 3x + 4y + 25 = 0			
68		•	K/A	м
68.	B. $3x + 4y - 25 = 0$	A	N/A	Μ
	C. $4x + 3y + 25 = 0$			
	D. $4x + 3y - 25 = 0$			
	A plane cutting a cone perpendicular to its axis is called?			
60	A. Circle			
69.	B. Parabola	A	K/A	Μ
	C. Hyperbola			
	D. Ellipse			
	The length of the tangent to the circle $3x^2 + 3y^2 - 7x - 6y =$			
	12 from the point (12, -14) is :			
70.	A. 9 Units	D	K/A	Б
/0.	B. 18.33 Units	B	K/A	E
	C. 5 Units			
	D. 1 Units			
	The point of intersection of the parabola $y^2 = 4x$ and the			
	straight line $x = 4$ are:			
	A. (2, 3), (4, -4)			
71.	B. $(3, 4), (4, -4)$	C	K/A	Ε
	C. $(4, 4), (4, -4)$			
	D. None of these			

72.	The point of intersection of the circle $x^2 + y^2 = 25$ and the					
	line y = 4 are:					
	A. (3, 4), (-3, -4)	Δ	V/A	М		
	B. (2, 3), (3, 4)	A	K/A	Μ		
	C. $(3, \pm 4), (-3, \pm 4)$					
	D. (-4, 3), (3, -4)					
	The circles $x^2 + y^2 + 2ax + c = 0$ and $x^2 + y^2 + 2by + c = 0$					
73.	touch if $\frac{1}{a^2} + \frac{1}{b^2} = ?$					
	$\frac{1}{a}$					
		В	K/A	Μ		
	1					
	B. C					
	$\begin{array}{c} \mathbf{B}, \qquad \mathbf{c} \\ & \frac{1}{\mathbf{b}} \end{array}$					
	D. 1					
74.	Equation of tangent of circle $x^2 + y^2 + 6x - 6y + 2 = 0$ at					
	(1/5, 3/5) is:					
	A. $3x - 4y + 2 = 0$	В	K/A	Е		
/	B. $4x - 3y + 1 = 0$	D				
	C. $5x - 3y + 1 = 0$					
	D. None of these					
	What will be the volume of the parallelepiped whose					
	coterminous edges are a, b and, where					
	a = 3i + 2k , b = i + 2j + k . c = j + 4k					
75.	A. 10 Cubic Units	D	K/A	Ε		
	B. 15 Cubic Units					
	C. 20 Cubic Units					
	D. 23 Cubic Units					
	If F = 3i – j + k , d = 2i + j + 4k , work done = ?					
	A. -9					
76.	B. 9	В	K/A	Μ		
	C. 1					
	D. None of these					
	Any vector whose direction is taken as arbitrarily and					
	magnitude is 0 is called as :					
77.	A. A null vector	A	K/A	Μ		
11.	B. A unit vector	Α	N/A	IVI		
	C. inverse of a vector					
	D. None of these					
	Let \hat{a} be any vector and $\begin{vmatrix} \mathbf{r} \\ \mathbf{a} \end{vmatrix}$ be its magnitude and \hat{a} is unit					
	Let a be any vector and $ a $ be its magnitude and $ a $ is unit					
	vector then $\hat{a} = ?$					
78.	A. $\hat{a} = \begin{vmatrix} 1 \\ a \end{vmatrix}$	В	K/A	Ε		
	B. $a = \frac{r}{ a }$					

				r	
	C.	$\hat{a} = \hat{a} \hat{a}$			
	D.	None of these			
79.	The unit vector \dot{i} can be expressed as :				
	Α.	[0, 0, 1]	В		Е
	в.	[1, 0, 0]		K/A	
	С.	[1, 1, 1]			
	D.	[0, 0, 0]			
80.		ny vector $a = (a_1, a_3, a_3)$ which relation is true :	D		М
	А.	$\underline{\underline{a}}_{1} = \underline{a}_{1}\underline{\underline{i}} + \underline{a}_{2}\underline{\underline{i}} + \underline{a}_{3}\underline{\underline{k}}$ $\underline{\underline{a}}_{2} = \underline{a}_{1}\underline{\underline{i}} + \underline{a}_{2}\underline{\underline{j}} - \underline{a}_{3}\underline{k}$			
	в.			K/A	
	c.	$\underline{\mathbf{a}} = \mathbf{a}_1^2 \underline{\mathbf{i}} + \mathbf{a}_2^2 \underline{\mathbf{i}} + \mathbf{a}_3^2 \underline{\mathbf{k}}$			
	D.	None of these			
81.	The vector which defines the position of the vector				
	relati	ive to origin is called as :			М
	Α.	position vector of that vector	A	K/A	
	в.	Resultant vector of that Vector		N/A	
	С.	Pointing vector			
	D.	Null vector			